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Report

Upward Bias in Estimation of Genetic Effects
D. Siegmund
Department of Statistics, Stanford University, Stanford, CA

Because of the large number of tests for linkage that are performed in genome scans, the naive estimator of the
size of a genetic effect in cases of borderline significance can be inflated and lead to unrealistic expectations for
successful replication. As a remedy, this report proposes lower confidence limits that account for the multiple
comparisons of the genome scan.

Genetic mapping is often discussed in the statistical lan-
guage of hypothesis testing, with primary interest fo-
cused on detecting markers linked to the trait. It is of
secondary interest to estimate the genomic location of
trait loci and of tertiary interest to estimate the sizes of
the genetic effects of detected or perhaps only suggested
loci. This third issue is particularly important in cases
of borderline detection, for which precise estimation of
genomic location is problematic. Natural questions
about future research involve (i) the sample size that
would be reasonable for a replication experiment and
(ii) the fraction of the total heritability of the trait ex-
plained by the detected locus.

Göring et al. (2001) have described the upward bias
that occurs if one uses the naive estimator for the genetic
effect when a genome-scanning statistic barely exceeds
the threshold for significance. They report that the bias
is particularly severe when the true genetic effect is
small and vanishes asymptotically when the genetic ef-
fect is large. They briefly consider bias correction on the
basis of an analysis of the conditional expected value of
the locus-specific log likelihood–ratio statistic given that
it exceeds the significance threshold, but they con-
clude that “attempts at bias correction give unsatisfac-
tory results.”

Allison et al. (2002) suggest a more robust but oth-
erwise similar approach to bias reduction and “dem-
onstrate its validity via Monte Carlo simulation” (p.

Received May 6, 2002; accepted for publication July 29, 2002;
electronically published October 17, 2002.

Address for correspondence and reprints: Dr. D. Siegmund, De-
partment of Statistics, Stanford University, Stanford, CA 94305.
E-mail: dos@stat.stanford.edu

� 2002 by The American Society of Human Genetics. All rights reserved.
0002-9297/2002/7105-0017$15.00

575). An unsatisfactory feature of this approach is that
the bias-corrected estimate depends on the threshold se-
lected, and it typically decreases as the threshold in-
creases. Thus Allison et al. (2002), who choose to illus-
trate their method with the relatively small threshold of
1.2 (LOD scale) in order “to minimize the simulation
time” (p. 578), obtain larger estimates of genetic effects
than they would if they used the LOD 3 threshold of
Göring et al. (2001). (A numerical example is given
below.)

A different approach is to estimate the genetic effects
by means of a confidence interval that accounts for mul-
tiple testing of many markers throughout the genome
(which the estimators of the cited articles do not) and
avoids the problem of selecting a somewhat arbitrary
threshold with its resulting effect on the estimate. More
to the point, in view of the concern that the naive point
estimators are biased upward, one might give lower con-
fidence limits. A conceptual distinction between hypoth-
esis testing and confidence limits is that, whereas a test
of hypothesis attempts to determine whether the data
are reasonably consistent with the hypothesis of no ge-
netic effect, a lower confidence limit seeks to determine
the range of genetic parameters that are consistent with
the data. Suppose the genetic effect on a trait is measured
by a parameter , with the value indicativey � 0 y p 0
of no genetic effect. The hypothesis is rejected ify p 0
the data are found to be inconsistent with this hypoth-
esized value. To find a lower confidence limit for y, we
ask for every if the data are consistent (at a sig-y � 00

nificance level g) with the hypothesis . The sety � y0

of values that are not rejected by such hypothesisy0

tests has a smallest value, say , which gives ay∗
lower confidence limit (Lehmann 1986, p.(1 � g)100%

90). It is important when considering this approach to
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note that although confidence limits are often, in fact,
computed only in cases when the hypothesis of no ge-
netic effect is rejected, in principle they are calculated in
all cases. Accepting or rejecting the value is equiv-y p 0
alent to saying that this null value is or is not as large
as the confidence limit. As a practical matter, it may
be easier to perform the test of first, since fail-y p 0
ure to reject the hypothesis of no genetic effect at the
significance level g is equivalent to saying that the

lower confidence limit is 0.(1 � g)100%
The method described below applies to both quali-

tative and quantitative traits in human and experimental
genetics. The case of a qualitative trait is illustrated by
a discussion of affected sib pairs. To allow for numerical
comparisons with the article by Göring et al. (2001), the
discussion of quantitative traits follows the hypothetical
example studied in detail in that article. The method can
be adapted to larger sibships and more-distant relatives,
but the details given below would change.

For both cases, we assume that data for N sib pairs
are obtained from fully informative markers spaced at
2 cM along an autosomal genome of 22 chromosomes
of average length 150 cM. (Göring et al. [2001] assume
that one also includes the parents of the sibs, but ig-
noring the parents simplifies and unifies what follows
without changing the basic picture.) All trait loci are
assumed to lie on different chromosomes and to act ad-
ditively without interaction, so the power to detect a
given trait locus depends primarily on the ratio of2 2j /KA

the additive variance associated with that locus to the
squared trait frequency, in the case of a qualitative trait,
and on the ratio of the additive variance to2 2 2h p j /jA Y

the overall phenotypic variance, for a quantitative trait.
For their numerical examples Göring et al. (2001) also

assume that , the overall heritability of the trait, is2H
0.5 and that This corresponds toN p 1,000. N p

for a qualitative trait in the sense that the factors302
multiplying a in equation (1) given below and in2h
equation (3) would then be equal.

Let denote the number of alleles shared identicalnn,t

by descent by the nth sib pair at the marker locus t. For
a sample of N affected sib pairs, the mean sharing sta-
tistic (which is also the score statistic under the as-
sumptions given above) standardized to have mean 0
and variance 1 under the hypothesis that the marker t
is unlinked to the trait is

N

1/2Z p (n � 1)/(N/2) .�t n,t
1

By the central limit theorem, it is approximately nor-

mally distributed when N is large. Its expectation at a
trait locus t is given by

1/2y p E(Z ) p (N/2) a , (1)t

where the parameter a can be expressed in terms of the
trait frequency and variance components or, alterna-
tively, in terms of the “apparent” risk ratios (Risch 1990)
(i.e., the risk ratios for a monogenic trait that would
yield the given value of a). The appropriate relation is

, where is the apparent risk ra-a p (2l � l � 1)/l lS O S S

tio for siblings and is for offspring. Under our as-lO

sumption of additive penetrances, .l p lS O

In the case of a quantitative trait, using the standard
normality assumption of variance components analysis,
one can derive the score statistic or likelihood ratio sta-
tistic to test the hypothesis that the marker t is unlinked.
A robust version of the score statistic, suggested by Tang
and Siegmund (2001), is of the form

N

2 1/2Z p C (n � 1)/[(1/2) C ] ,� �t n n,t n
1

where the are functions of the quantitative pheno-Cn

types only. By the central limit theorem, this statistic is
approximately normally distributed for large N whether
or not the phenotypes satisfy the standard normality
assumption. The robust Haseman-Elston (1972) statistic
studied by Allison et al. (2002) is of the same form but
with different and simpler because of the Haseman-Cn

Elston starting point of reducing the two-dimensional
phenotypic values to one-dimensional squared pheno-
typic differences.

The expected value of at a QTL t is approximatelyZt

1/2 2 2 2 2y p [(N/2) (1 � r )/(1 � r ) ](h /2c) , (2)

where is the locus-specific heritability, r is2 2 2h p j /jA Y

the phenotypic correlation between sibs, and 2c p
(Tang and Siegmund 2001). When the normality2ECn

assumption of variance component analysis is true,
, and equation (2) simplifies to2 2 2 2c p (1 � r )/(1 � r )

2 2 2 1/2 2y p [(N/2)(1 � r )/(1 � r ) ] h /2 . (3)

In what follows, we directly estimate the noncentrality
parameter y. Equations (1) or (2)-(3) allow us to convert
an estimate of y into an estimate of or . Under the2l hS

assumed model described above, . For sim-2r p H /2
plicity, I assume that r and are known, say from2c
previous segregation analyses. Otherwise they can be
estimated from the data. Alternatively, one can draw
limited conclusions directly from the estimate of y. Since
estimates of r and are based only on phenotype data,2c
there is no particular concern that they have been biased



Reports 1185

Table 1

Lower Confidence Limits for h2

Zmax (LOD) ˆ 2h

LOWER LIMIT FOR

CONFIDENCE INTERVAL

95% 80% 50%

3.00 (2.0) .24 .00 .00 .00
3.10 (2.1) .25 .00 .00 .08
3.25 (2.3) .26 .00 .00 .18
3.50 (2.7) .28 .00 .12 .24
3.85 (3.2) .31 .00 .21 .29
4.05 (3.6) .33 .15 .24 .31
4.25 (3.9) .35 .18 .26 .33
4.60 (4.6) .37 .22 .29 .36
5.25 (6.0) .43 .28 .35 .42

NOTE.—The sample size is and the sib correlation isN p 1,000
The maximum value of the Z-statistics is . (The equiv-r p 0.25. Zmax

alent LOD score is given in parentheses.) The naive estimator of locus
specific heritability is .ˆ 2h

by the genome scan. Some numerical experimentation
with equation (3) shows reasonable robustness against
misspecification of r, at least in the case of greatest in-
terest, that neither nor r is large and N is large.2h

Since the locus t is unknown, detection of linkage in
a genome scan is determined by a threshold z, such that
if , one concludes that there is a gene linked to tZ � zt

contributing to the trait. The P value, taking multiple
comparisons into account, is , where theP {max Z � z}0 t t

maximum is taken over all marker loci t and the sub-
script 0 denotes the null hypothesis that there are no
trait loci linked to the genomic region studied. (An ap-
proximation is given below.) For a scan based on our
assumptions of marker density and genome length, for
either of the statistics defined above, theZ p max Zmax t t

detection threshold z to guarantee a genomewide false-
positive error rate of 0.05 is , or equivalentlyz p 3.85
on the LOD scale, . This is2LOD p z /4.6 p 3.22
slightly higher than the conventional level of LOD p

used by Göring et al. (2001).3
A naive estimate for the genetic effect in a particular

genomic region is obtained by solving the equation
, where now the maximum is taken over ally p max Zt t

markers linked to the genomic region under consider-
ation. In the principal example of Göring et al. (2001),
the genomewide maximum is assumed to be roughly
equal to the detection threshold, say , so byz p 3.85
equation (3), the estimated value of when2h N p

and , would be ,ˆ2 21,000 r p H /2 p 0.25 h p 0.31
which suggests a substantial genetic effect. This is
roughly the same value obtained by Göring et al. (2001)
for a slightly different value of z by a slightly different
argument. This argument applied to the case of a qual-
itative trait with leads to the same value ofN p 302
0.31 for the naive estimate of a, which converts to 1.45
for the apparent .lS

To get some understanding of the bias-corrected es-
timates of Allison et al. (2002) with a minimum of tech-
nical fuss, suppose that at a given trait locus t the prob-
ability distribution of the score statistic, , or of theZt

square root of twice the log–likelihood ratio statistic is
exactly normal with mean value y proportional to (a2h
for a qualitative trait) and variance equal to 1. This is
approximately true in large samples for both of the
slightly different cases discussed in Allison et al. (2002)
and Göring et al. (2001). Given a threshold T and that

, the suggested estimator for y would be the max-Z � Tt

imum of 0 and the solution y to the equation obtained
by setting the observed value of equal to its condi-Zt

tional expectation given that it exceeds the threshold,
namely , where J andZ p y � J(T � y)/[1 � F(T � y)]t

F are the standard normal probability density function
and cumulative distribution function, respectively. For

, which is substantially above the thresholdZ p 3.85t

( ) of Allison et al. (2002), the es-T p 2.35 LOD p 1.2
timate of (and of a) would be 0.30, which involves2h
hardly any bias correction compared with the naive
estimator; the more stringent threshold, T p 3.71
( ) of Göring et al. (2001) would lead by theLOD p 3
same method to estimate or a to be 0 (hence ).2h l p 1S

To obtain a lower confidence limit for y and hence
for the genetic effects, assume following Göring et al.
(2001) that there are k mutually unlinked genes con-
tributing equally to the trait and a perhaps much larger
number of polygenes whose minor contributions are at
the level of noise for the sample size N. For the observed
value of , from the relation between testsz p max Zt t

and confidence limits described above, we can find a
lower level confidence limit for y by solving for y1 � g

the equation

P {max Z � z} p g . (4)y t
t

See below for a simple approximation to the required
probability in the (conservative) case that the trait loci
are assumed to coincide with marker loci. A lower con-
fidence limit for a, hence for , or for can be obtained2l hS

from the lower confidence limit for y via equations (1)
or (2), respectively.

The 95% lower confidence limit for a and for is2h
0 when equals the .05 significanceZ p max Zmax t

threshold, 3.85. If a 95% lower confidence limit is re-
garded as an unnecessarily pessimistic assessment of the
locus-specific heritability, one could use a different con-
fidence coefficient. For example, a 50% lower confidence
limit gives a median unbiased point estimator (Lehmann
1986), which has the property that if the same experi-
ment could be repeated a large number of times, the
estimate, which would vary from one experiment to an-
other, would be below the true parameter value ap-
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proximately as often as it would be above. (This inter-
pretation follows from putting in equation (4).)g p 0.5
For the QTL case, table 1 gives 95%, 80%, and 50%
lower confidence limits for and different hypo-k p 1
thetical values for For comparison, the naive es-Z .max

timator suggested above is also given. One sees thatˆ 2h
the naive estimator increases linearly with the observed
value of , and over the given range it always suggestsZmax

a substantial genetic effect. The confidence limits at first
equal 0, indicating the reasonable possibility of no ge-
netic effect whatever, then increase rapidly, and finally
increase roughly parallel to . In the range of rapidˆ 2h
increase there is substantial bias correction; the confi-
dence limit is a warning against the “irrational exuber-
ance” of an uncritical acceptance of the naive estimator.
To suggest a sample size that might suffice for replica-
tion, the 80% lower confidence limit provides a (per-
haps) reasonable compromise between the conservative
95% limit and the median unbiased estimator. In the
case of a qualitative trait with , the lower con-N p 302
fidence limits in table 1 apply directly to a and can then
be converted into limits for .lS

(Table 1 focuses on the estimated genetic effect, de-
scribed by or by a in the two cases under consider-2h
ation. It may be worth noting that the bias correction,
defined to be the difference between the naive estimate
and the confidence limit, decreases with increasing values
of , once this latter value is large enough that theZmax

confidence limit is positive, and—by equations (1) and
(2)—it decreases with increasing values of N.)

If there are more contributing loci, there are more
opportunities for a weak locus to lead to a deceptively
large maximum, so the lower confidence limit would
decrease. The magnitude of the change is surprisingly
small (e.g., for the 95% lower confidenceZ p 4.25max

limit of 0.18 for in table 1 when becomes 0.162h k p 1
or 0.14 for 2 or 3, respectively.) The change wouldk p
be substantially smaller if the second and/or third trait
loci have smaller locus-specific heritability. Since we can-
not expect to know the true number of trait loci, it is
reassuring that the confidence limit is relatively insen-
sitive to the assumed number.

It is apparent that there is useful information in other
properties of the process besides its maximum. ForZt

example, suppose we let , where the max-Z p max Z(1) t t

imum is taken over all chromosomes, the maximumZ(2)

value over the other chromosomes that did not give the
value , and so on. Large values for both andZ Z(1) (1)

would suggest that there are two important genesZ(2)

contributing to the trait. If denotes the observedz � z1 2

values of these two statistics, then we could find joint
lower confidence limits for by solving they � y1 2

equation

P {Z � z , Z � z } p g ,y ,y (1) 1 (2) 21 2

for which a more elaborate application of the approx-
imations given below could be used. This would be a
substantially more complex undertaking than what we
have described above, both technically and in its inter-
pretation, since it would lead to additional statistical
issues of multiple comparisons. Hence we do not pursue
it here.

One can obtain upper confidence limits by similar rea-
soning, although these seem less relevant to the current
concerns. In the case of QTLs, they will often provide
about the same information as the obvious inequality

. For example, for and2 2h � H p 2r Z p 3.85max

, the upper 95% confidence limit for is 0.43.2k p 1 h
For the qualitative trait mentioned above, the upper con-
fidence limit for the apparent would be 1.75.lS

In applications there will be numerous complicating
features to the simple model discussed above. Those that
make the true distribution of stochasticallymax Zt

smaller than the nominal distribution will make the
lower confidence limit conservative (i.e., smaller). The
most important of these are incompletely informative
markers that are analyzed by multipoint analysis with
parents also genotyped. The analysis of Teng and Sieg-
mund (1999) suggests that the effect is not large if mark-
ers are reasonably informative and closely spaced. In the
QTL case, major genes also tend to make the distribution
of stochastically smaller than nominal. As shownmax Zt

by Tang and Siegmund (2001), the effect is small unless
there are rare additively acting alleles of large effect or
a substantial level of dominance. More bothersome is
that under a variety of conditions the true distribution
of can be stochastically larger, so the lower con-max Zt

fidence limits would be anticonservative. If a relatively
small number of large pedigrees are used, the central
limit theorem will not apply, and the statistics mayZt

not be approximately normally distributed. Tang and
Siegmund (2001) give a correction for the probability
approximations described below that account for the
dependencies of identity-by-descent counts within fam-
ilies. Features that would be more difficult to account
for analytically are missing genotype information for
substantial numbers of founders and radically nonnor-
mal distributions for phenotypes in the QTL case.

To account for these and perhaps other complications,
one may substitute simulations for the analytic approx-
imations given below. This is a relatively simple matter
for unlinked chromosomes, since then phenotypes and
genotypes are unrelated, so the simulation requires only
that the identity-by-descent counts be simulated under
a suitable model of recombination for the marker in-
formativeness actually obtained and (in the QTL case)
associated at random to the phenotypes. The problem
of simulation for linked chromosomes is more compli-
cated in at least two respects: (i) one must choose a locus
t and a trial value of y (i.e., of underlying genetic pa-
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rameters) and must iterate the simulation to obtain an
approximate solution of equation (4); and (ii) in the QTL
case, one must also choose a phenotype distribution. To
minimize the number of iterations required, one can use
the approximations given below to obtain a reasonable
starting value for y. A flexible class of tractable phe-
notype distributions can be obtained from multivariate
t distributions (Lange et al. 1989) with varying numbers
of df (which include the normal distribution if one allows
an infinite number of df) combined with the possibility
of diallelic major genes. If the simulated probabilities are
critically dependent on the distribution chosen for the
phenotypes or on the specific location chosen for the
gene (which might occur if marker information varies
widely from one location to another), it is probably a
danger signal, and the results should be interpreted with
considerable caution.

Although it is the point of view of this report that
confidence regions are generally more informative than

hypothesis tests, there are legitimate reasons that hy-
pothesis tests and the associated P values remain a pri-
mary mode of analysis. To obtain a locus-specific P value
or a conservative approximation for a genomewide P
value as a summary of the evidence against the hypoth-
esis of no linkage, one need only assume the legitimacy
of Mendel’s laws. Although the confidence limits given
above are reasonably robust with regard to estimation
of the noncentrality parameter y, conversion of bounds
on y to bounds on genetically interpretable parameters
(locus-specific heritability, risk ratios, etc.) requires a rel-
atively specific model of the relation of genotype to phe-
notype and can be misleading if the underlying model
is not at least approximately correct.
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Appendix A

The following approximations are adapted from Feingold et al. (1993). Assume that markers are equally spaced
at intermarker distance D on a genomic region consisting of C chromosomes of total genetic length L. Under the
null hypothesis of no linkage

1/2P {max Z ! b} ≈ exp {�2C 1 � F(b) �2bLbf(b)n b{2bD} } , (A1)[ ] ( )0 jD
j

where and are the standard normal cumulative and density function, respectively. The function n is aF(x) f(x)
discreteness correction for the distance D between markers. The defining expression can be found in Siegmund
(1985, p. 82). For the purposes of this report, it is adequate to approximate by .n(x) exp (�0.583x)

For one linked chromosome, where the trait locus is assumed for simplicity to coincide with a marker locus and
not to lie near the end of the chromosome, and the noncentrality at the trait locus equals y, we have

2P {max Z ! b} ≈ F(b � y) � f(b � y)[2n/y � n /(b � y)] , (A2)y jD
j

where , as above and the maximum is taken over linked markers.1/2n p n b{2bD}( )
Given b, let denote the probability in equation (A1) and denote the probability in equationQ (b,C,L) Q (b,y)1 2

(A2). Then for equation (4) we use the approximation

k1 � [Q (b,y)] Q [b,22 � k,150(22 � k)] .2 1

One can also deal with the case when the trait locus is between marker loci. The result is more complicated and
the consequence insignificant unless marker loci are widely spaced. For example, for and an intermarkerZ p 3.85max

distance of cM, the 80% lower confidence limit for would be 0.23 if the trait locus is assumed to2D p 10 h
coincide with a marker locus and 0.26 if it lies midway between marker loci. The most conservative case is to
assume that the trait locus coincides with a marker locus.
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